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Restaurant-related foodborne illnesses pose significant public health, economic,
and reputational challenges. Traditional food safety methods like manual
inspections and reactive testing are often slow and fail to detect risks in real time.
This study presents a predictive model that uses Machine Learning (ML) and
Artificial Intelligence (Al) to proactively identify contamination risks during
restaurant food preparation. By integrating real-time data, the model aims to
enhance food safety, reduce contamination events, and support smarter decision-
making.
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Theoretical and practical Results Conclusion
Accuracy: 95%

Impllcatlons (Precision: 92%, Recall
89%, F1-Score: 0,90)

By using Al and real-time data, we move

from reacting to food safety problems to
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